Lesson No 03
1.1. Intel iapx88 Architecture

Now we select a specific architecture to discuss these abstract ideas in concrete form. We will be using IBM PC based on Intel architecture because of its wide availability, because of free assemblers and debuggers available for it, and because of its wide use in a variety of domains. However the concepts discussed will be applicable on any other architecture as well; just the mnemonics of the particular language will be different.

Technically iAPX88 stands for “Intel Advanced Processor Extensions 88.” It was a very successful processor also called 8088 and was used in the very first IBM PC machines. Our discussion will revolve around 8088 in the first half of the course while in the second half we will use iAPX386 which is very advanced and powerful processor. 8088 is a 16bit processor with its accumulator and all registers of 16 bits. 386 on the other hand, is a 32bit processor. However it is downward compatible with iAPX88 meaning that all code written for 8088 is valid on the 386. The architecture of a processor means the organization and functionalities of the registers it contains and the instructions that are valid on the processor. We will discuss the register architecture of 8088 in detail below while its instructions are discussed in the rest of the book at appropriate places.

1.2. History

Intel did release some 4bit processors in the beginning but the first meaningful processor was 8080, an 8bit processor. The processor became popular due to its simplistic design and versatile architecture. Based on the experience gained from 8080, an advanced version was released as 8085. The processor became widely popular in the engineering community again due to its simple and logical nature.

Intel introduced the first 16bit processor named 8088 at a time when the concept of personal computer was evolving. With a maximum memory of 64K on the 8085, the 8088 allowed a whole mega byte. IBM embedded this processor in their personal computer. The first machines ran at 4.43 MHz; a blazing speed at that time. This was the right thing at the right moment. No one expected this to become the biggest success of computing history. IBM PC XT became so popular and successful due to its open architecture and easily available information.

The success was unexpected for the developers themselves. As when Intel introduced the processor it contained a timer tick count which was valid for five years only. They never anticipated the architecture to stay around for more than five years but the history took a turn and the architecture is there at every desk even after 25 years and the tick is to be specially handled every now and then.

1.3. Register Architecture

The iAPX88 architecture consists of 14 registers.

[image: image1]
General Registers (AX, BX, CX, and DX)

The registers AX, BX, CX, and DX behave as general purpose registers in Intel architecture and do some specific functions in addition to it. X in their names stand for extended meaning 16bit registers. For example AX means we are referring to the extended 16bit “A” register. Its upper and lower byte are separately accessible as AH (A high byte) and AL (A low byte). All general purpose registers can be accessed as one 16bit register or as two 8bit registers. The two registers AH and AL are part of the big whole AX. Any change in AH or AL is reflected in AX as well. AX is a composite or extended register formed by gluing together the two parts AH and AL.

The A of AX stands for Accumulator. Even though all general purpose registers can act as accumulator in most instructions there are some specific variations which can only work on AX which is why it is named the accumulator. The B of BX stands for Base because of its role in memory addressing as discussed in the next chapter. The C of CX stands for Counter as there are certain instructions that work with an automatic count in the CX register. The D of DX stands for Destination as it acts as the destination in I/O operations. The A, B, C, and D are in letter sequence as well as depict some special functionality of the register.

Index Registers (SI and DI)

SI and DI stand for source index and destination index respectively. These are the index registers of the Intel architecture which hold address of data and used in memory access. Being an open and flexible architecture, Intel allows many mathematical and logical operations on these registers as well like the general registers. The source and destination are named because of their implied functionality as the source or the destination in a special class of instructions called the string instructions. However their use is not at all restricted to string instructions. SI and DI are 16bit and cannot be used as 8bit register pairs like AX, BX, CX, and DX.

Instruction Pointer (IP)

This is the special register containing the address of the next instruction to be executed. No mathematics or memory access can be done through this register. It is out of our direct control and is automatically used. Playing with it is dangerous and needs special care. Program control instructions change the IP register.

Stack Pointer (SP)

It is a memory pointer and is used indirectly by a set of instructions. This register will be explored in the discussion of the system stack.

Base Pointer (BP)

It is also a memory pointer containing the address in a special area of memory called the stack and will be explored alongside SP in the discussion of the stack.

Flags Register

The flags register as previously discussed is not meaningful as a unit rather it is bit wise significant and accordingly each bit is named separately. The bits not named are unused. The Intel FLAGS register has its bits organized as follows:

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	
	
	
	
	O
	D
	I
	T
	S
	Z
	
	A
	
	P
	
	C

The individual flags are explained in the following table.

	C
	Carry
	When two 16bit numbers are added the answer can be 17 bits long or when two 8bit numbers are added the answer can be 9 bits long. This extra bit that won’t fit in the target register is placed in the carry flag where it can be used and tested.

	P
	Parity
	Parity is the number of “one” bits in a binary number. Parity is either odd or even. This information is normally used in communications to verify the integrity of data sent from the sender to the receiver.

	A
	Auxiliary Carry
	A number in base 16 is called a hex number and can be represented by 4 bits. The collection of 4 bits is called a nibble. During addition or subtraction if a carry goes from one nibble to the next this flag is set. Carry flag is for the carry from the whole addition while auxiliary carry is the carry from the first nibble to the second.

	Z
	Zero Flag
	The Zero flag is set if the last mathematical or logical instruction has produced a zero in its destination.

	S
	Sign Flag
	A signed number is represented in its two’s complement form in the computer. The most significant bit (MSB) of a negative number in this representation is 1 and for a positive number it is zero. The sign bit of the last mathematical or logical operation’s destination is copied into the sign flag.

	T
	Trap Flag
	The trap flag has a special role in debugging which will be discussed later.

	I
	Interrupt Flag
	It tells whether the processor can be interrupted from outside or not. Sometimes the programmer doesn’t want a particular task to be interrupted so the Interrupt flag can be zeroed for this time. The programmer rather than the processor sets this flag since the programmer knows when interruption is okay and when it is not. Interruption can be disabled or enabled by making this bit zero or one, respectively, using special instructions.

	D
	Direction Flag
	Specifically related to string instructions, this flag tells whether the current operation has to be done from bottom to top of the block (D=0) or from top to bottom of the block (D=1).

	O
	Overflow Flag
	The overflow flag is set during signed arithmetic, e.g. addition or subtraction, when the sign of the destination changes unexpectedly. The actual process sets the overflow flag whenever the carry into the MSB is different from the carry out of the MSB

Segment Registers (CS, DS, SS, and ES)

The code segment register, data segment register, stack segment register, and the extra segment register are special registers related to the Intel segmented memory model and will be discussed later.

1.4. Our First Program

The first program that we will write will only add three numbers. This very simple program will clarify most of the basic concepts of assembly language. We will start with writing our algorithm in English and then moving on to convert it into assembly language.

English Language Version

“Program is an ordered set of instructions for the processor.” Our first program will be instructions manipulating AX and BX in plain English.

move 5 to ax
move 10 to bx
add bx to ax
move 15 to bx
add bx to ax

Even in this simple reflection of thoughts in English, there are some key things to observe. One is the concept of destination as every instruction has a “to destination” part and there is a source before it as well. For example the second line has a constant 10 as its source and the register BX as its destination. The key point in giving the first program in English is to convey that the concepts of assembly language are simple but fine. Try to understand them considering that all above is everyday English that you know very well and every concept will eventually be applicable to assembly language.

Assembly Language Version

Intel could have made their assembly language exactly identical to our program in plain English but they have abbreviated a lot of symbols to avoid unnecessarily lengthy program when the meaning could be conveyed with less effort. For example Intel has named their move instruction “mov” instead of “move.” Similarly the Intel order of placing source and destination is opposite to what we have used in our English program, just a change of interpretation. So the Intel way of writing things is:

operation destination, source
operation destination
operation source
operation

The later three variations are for instructions that have one or both of their operands implied or they work on a single or no operand. An implied operand means that it is always in a particular register say the accumulator, and it need not be mentioned in the instruction. Now we attempt to write our program in actual assembly language of the iapx88.

	
	Example 1.1

	001

002

003

004

005

006

007

008

009

010
	; a program to add three numbers using registers

[org 0x0100]

 mov ax, 5 ; load first number in ax

 mov bx, 10 ; load second number in bx

 add ax, bx ; accumulate sum in ax

 mov bx, 15 ; load third number in bx

 add ax, bx ; accumulate sum in ax

 mov ax, 0x4c00 ; terminate program

 int 0x21

	001
	To start a comment a semicolon is used and the assembler ignores everything else on the same line. Comments must be extensively used in assembly language programs to make them readable.

	002
	Leave the org directive for now as it will be discussed later.

	003
	The constant 5 is loaded in one register AX.

	004
	The constant 10 is loaded in another register BX.

	005
	Register BX is added to register AX and the result is stored in register AX. Register AX should contain 15 by now.

	006
	The constant 15 is loaded in the register BX.

	007
	Register BX is again added to register AX now producing 15+15=30 in the AX register. So the program has computed 5+10+15=30.

	008
	Vertical spacing must also be used extensively in assembly language programs to separate logical blocks of code.

	009-010
	The ending lines are related more to the operating system than to assembly language programming. It is a way to inform DOS that our program has terminated so it can display its command prompt again. The computer may reboot or behave improperly if this termination is not present.

Assembler, Linker, and Debugger

We need an assembler to assemble this program and convert this into executable binary code. The assembler that we will use during this course is “Netwide Assembler” or NASM. It is a free and open source assembler. And the tool that will be most used will be the debugger. We will use a free debugger called “A fullscreen debugger” or AFD. These are the whole set of weapons an assembly language programmer needs for any task whatsoever at hand.

To assemble we will give the following command to the processor assuming that our input file is named EX01.ASM.

nasm ex01.asm –o ex01.com –l ex01.lst

This will produce two files EX01.COM that is our executable file and EX01.LST that is a special listing file that we will explore now. The listing file produced for our example above is shown below with comments removed for neatness.

 1

 2 [org 0x0100]

 3 00000000 B80500 mov ax, 5

 4 00000003 BB0A00 mov bx, 10

 5 00000006 01D8 add ax, bx

 6 00000008 BB0F00 mov bx, 15

 7 0000000B 01D8 add ax, bx

 8

 9 0000000D B8004C mov ax, 0x4c00

 10 00000010 CD21 int 0x21

The first column in the above listing is offset of the listed instruction in the output file. Next column is the opcode into which our instruction was translated. In this case this opcode is B8. Whenever we move a constant into AX register the opcode B8 will be used. After it 0500 is appended which is the immediate operand to this instruction. An immediate operand is an operand which is placed directly inside the instruction. Now as the AX register is a word sized register, and one hexadecimal digit takes 4 bits so 4 hexadecimal digits make one word or two bytes. Which of the two bytes should be placed first in the instruction, the least significant or the most significant? Similarly for 32bit numbers either the order can be most significant, less significant, lesser significant, and least significant called the big-endian order used by Motorola and some other companies or it can be least significant, more significant, more significant, and most significant called the little-endian order and is used by Intel. The big-endian have the argument that it is more natural to read and comprehend while the little-endian have the argument that this scheme places the less significant value at a lesser address and more significant value at a higher address.

Because of this the constant 5 in our instruction was converted into 0500 with the least significant byte of 05 first and the most significant byte of 00 afterwards. When read as a word it is 0005 but when written in memory it will become 0500. As the first instruction is three bytes long, the listing file shows that the offset of the next instruction in the file is 3. The opcode BB is for moving a constant into the BX register, and the operand 0A00 is the number 10 in little-endian byte order. Similarly the offsets and opcodes of the remaining instructions are shown in order. The last instruction is placed at offset 0x10 or 16 in decimal. The size of the last instruction is two bytes, so the size of the complete COM file becomes 18 bytes. This can be verified from the directory listing, using the DIR command, that the COM file produced is exactly 18 bytes long.

Now the program is ready to be run inside the debugger. The debugger shows the values of registers, flags, stack, our code, and one or two areas of the system memory as data. Debugger allows us to step our program one instruction at a time and observe its effect on the registers and program data. The details of using the AFD debugger can be seen from the AFD manual.

After loading the program in the debugger observe that the first instruction is now at 0100 instead of absolute zero. This is the effect of the org directive at the start of our program. The first instruction of a COM file must be at offset 0100 (decimal 255) as a requirement. Also observe that the debugger is showing your program even though it was provided only the COM file and neither of the listing file or the program source. This is because the translation from mnemonic to opcode is reversible and the debugger mapped back from the opcode to the instruction mnemonic. This will become apparent for instructions that have two mnemonics as the debugger might not show the one that was written in the source file.

As a result of program execution either registers or memory will change. Since our program yet doesn’t touch memory the only changes will be in the registers. Keenly observe the registers AX, BX, and IP change after every instruction. IP will change after every instruction to point to the next instruction while AX will accumulate the result of our addition.

CS

DS

SS

ES

IP

SP

BP

SI

DI

AH

AL

BH

BL

CH

CL

DH

DL

FLAGS

(AX)

(BX)

(CX)

(DX)

